* Step 1: Bounds WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: active(c()) -> mark(d()) g(ok(X)) -> ok(g(X)) h(ok(X)) -> ok(h(X)) proper(c()) -> ok(c()) proper(d()) -> ok(d()) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) - Signature: {active/1,g/1,h/1,proper/1,top/1} / {c/0,d/0,mark/1,ok/1} - Obligation: innermost runtime complexity wrt. defined symbols {active,g,h,proper,top} and constructors {c,d,mark,ok} + Applied Processor: Bounds {initialAutomaton = minimal, enrichment = match} + Details: The problem is match-bounded by 4. The enriched problem is compatible with follwoing automaton. active_0(2) -> 1 active_1(2) -> 5 active_2(3) -> 6 active_2(4) -> 6 active_3(7) -> 8 active_4(9) -> 10 c_0() -> 2 c_1() -> 4 d_0() -> 2 d_1() -> 3 d_2() -> 7 d_3() -> 9 g_0(2) -> 1 g_1(2) -> 4 h_0(2) -> 1 h_1(2) -> 4 mark_0(2) -> 2 mark_1(3) -> 1 mark_1(3) -> 5 mark_2(7) -> 6 ok_0(2) -> 2 ok_1(3) -> 1 ok_1(3) -> 5 ok_1(4) -> 1 ok_1(4) -> 4 ok_1(4) -> 5 ok_2(7) -> 6 ok_3(9) -> 8 proper_0(2) -> 1 proper_1(2) -> 5 proper_2(3) -> 6 proper_3(7) -> 8 top_0(2) -> 1 top_1(5) -> 1 top_2(6) -> 1 top_3(8) -> 1 top_4(10) -> 1 * Step 2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: active(c()) -> mark(d()) g(ok(X)) -> ok(g(X)) h(ok(X)) -> ok(h(X)) proper(c()) -> ok(c()) proper(d()) -> ok(d()) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) - Signature: {active/1,g/1,h/1,proper/1,top/1} / {c/0,d/0,mark/1,ok/1} - Obligation: innermost runtime complexity wrt. defined symbols {active,g,h,proper,top} and constructors {c,d,mark,ok} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))